
Appium Bootcamp 3: Interrogating Your App
Appium Bootcamp is a series of articles prepared by Selenium guru Dave Haeffner, and leading Appium contributor Matthew Edwards, for Sauce Labs.
Dave also authors the , which includes tips for using Selenium, and where you can sign up for his weekly email on the topic of Elemental Selenium website
Selenium testing. He is also the author of the Selenium Guidebook.

Using the Appium Console
An iOS Example

Finding Elements
 Finding Elements by ID

 An Android Example
Finding Elements
 Finding Elements by ID

 Ending the session
Using An Inspector
Outro

Writing automated scripts to drive an app in Appium is very similar to how it's done in Selenium. We first need to choose a locator, and use it to find an
element. We can then perform an action against that element.

In Appium, there are two approaches to interrogate an app to find the best locators to work with. Through the Appium Console, or through an Inspector (e.
g., Appium Inspector, uiautomatorviewer, or selendroid inspector).

Let's step through how to use each of them to decompose and understand your app.

http://elementalselenium.com/
https://seleniumguidebook.com/

Copyright Sauce Labs 2016

Page 2

Using the Appium Console

Assuming you've followed along with the last two posts, you should have everything setup and ready to run.

Go ahead and startup your Appium server (by clicking in the Appium GUI) and start the Appium Ruby Console (by running in a terminal Launch arc
window that is in the same directory as your file). After it loads you will see an emulator window of your app that you can interact with as well appium.txt
as an interactive prompt for issuing commands to Appium.

The interactive prompt is where we'll want to focus. It offers a host of readily available commands to quickly give us insight into the elements that make up
the user interface of the app. This will help us easily identify the correct locators to automate our test actions against.

The first command you'll want to know about is . It gives you access to every element in the app. If you run it by itself, it will output all of the elements page
in the app, which can be a bit unwieldy. Alternatively you can specify additional arguments along with it. This will filter the output down to just a subset of
elements. From there, there is more information available that you can use to further refine your results.

Let's step through some examples of that and more for both iOS and Android.

An iOS Example

To get a quick birds eye view of our iOS app structure, let's get a list of the various element classes available. With the command we can do page_class
just that.

[1] pry(main)> page_class
get /source
13x UIAStaticText
12x UIATableCell
4x UIAElement
2x UIAWindow
1x UIATableView
1x UIANavigationBar
1x UIAStatusBar
1x UIAApplication

UIAStaticText and all of the others are the specific class names for types of elements in iOS. You can see reference documentation for UIAStaticText
 . If you want to see the others, go .here here

With the command we can specify a class name and see all of the elements for that type. When specifying the element class name, we can either page
specify it as a string, or a symbol (e.g., or).'UIAStaticText' :UIAStaticText

Within each element of the list, notice their properties -- things like , , , and . This is the kind of information we will want to reference name label value id
in order interact with the app.

[2] pry(main)> page :UIAStaticText
get /context
post /execute
{
 :script => "UIATarget.localTarget().frontMostApp().windows()[0].getTree()"
}
UIAStaticText
 name, label, value: UICatalog
UIAStaticText
 name, label: Buttons, Various uses of UIButton
 id: ButtonsTitle => Buttons
 ButtonsExplain => Various uses of UIButton
UIAStaticText
 name, label: Controls, Various uses of UIControl
 id: ControlsExplain => Various uses of UIControl
 ControlsTitle => Controls
UIAStaticText
 name, label: TextFields, Uses of UITextField
 id: TextFieldExplain => Uses of UITextField
 TextFieldTitle => TextFields
...

Note the and (just after we issue the command but before the element list). It is the network traffic that is happening behind the scenes to get us get post
this information from Appium. The response to has a script string. In it we can see which window this element lives in (e.g., post /execute windows()

).[0]

https://developer.apple.com/library/ios/documentation/ToolsLanguages/Reference/UIAStaticTextClassReference/UIAStaticText/UIAStaticText.html
https://developer.apple.com/library/ios/documentation/DeveloperTools/Reference/UIAutomationRef/_index.html

Copyright Sauce Labs 2016

Page 3

This is important because iOS has the concept of windows, and some elements may not appear in the console output even if they're visible to the user in
the app. In that case, you could list the elements in other pages (e.g.,). is generally the elements for your app, whereas is where page window: 1 0 1
the system UI lives. This will come in handy when dealing with alerts.

Finding Elements

Within each element of the list, notice their properties -- things like , , , and . This is the kind of information we will want to reference name label value id
in order interact with the app.

Let's take the first element for example.

UIAStaticText
 name, label, value: UICatalog

In order to find this element and interact with it, we can can search for it with a couple of different commands: , , or .find text text_exact

> find('UICatalog')
...
#<Selenium::WebDriver::Element:0x..fbe2eadf843018080 id="0">

> text('UICatalog')
...
#<Selenium::WebDriver::Element:0x..fd4a475024c1bbfe2 id="1">

> text_exact('UICatalog')
...
#<Selenium::WebDriver::Element:0x56d7cdb94d0de4a4 id="2">

We'll know that we successfully found an element when we see a object returned.Selenium::WebDriver::Element

It's worth noting that in the underlying gem that enables this REPL functionality, if we end our command with a semi-colon it will not show us the return
object.

> find('UICatalog')
displays returned value

> find('UICatalog');
returned value not displayed

To verify that we have the element we expect, let's access the name attribute for it.

> find('UICatalog').name
...
"UICatalog"

 Finding Elements by ID

 A better approach to find an element would be to reference its id, since it is less likely to change than the text of the element.

UIAStaticText
 name, label: Buttons, Various uses of UIButton
 id: ButtonsTitle => Buttons
 ButtonsExplain => Various uses of UIButton

On this element, there are some IDs we can reference. To find it using these IDs we can use the idcommand. And to confirm that it's the element we
expect, we can ask it for its name attribute.

Copyright Sauce Labs 2016

Page 4

> id('ButtonsTitle').name
...
"Buttons, Various uses of UIButton"

For a more thorough walk through and explanation of these commands (and some additional ones) go here. For a full list of available commands go here.

 An Android Example

 To get a quick birds eye view of our Android app structure, let's get a list of the various element classes available. With the command we page_class
can do just that.

[1] pry(main)> page_class
get /source
12x android.widget.TextView
1x android.view.View
1x android.widget.ListView
1x android.widget.FrameLayout
1x hierarchy

android.widget.TextView and all of the others are the specific class names for types of elements in Android. You can see reference documentation
for . If you want to see the others, simply do a Google search for the full class name.TextView here

With the command we can specify a class name and see all of the elements for that type. When specifying the element class name, we can specify it page
as a string (e.g.,).'android.widget.TextView'

[2] pry(main)> page 'android.widget.TextView'
get /source
post /appium/app/strings
android.widget.TextView (0)
 text: API Demos
 id: android:id/action_bar_title
 strings.xml: activity_sample_code
android.widget.TextView (1)
 text, desc: Accessibility
 id: android:id/text1
android.widget.TextView (2)
 text, desc: Animation
 id: android:id/text1

Note the and (just after we issue the command but before the element list). It is the network traffic that is happening behind the scenes to get us get post
this information from Appium. is to download the source code for the current view and gets the app's get /source post /appium/app/strings
strings. These app strings will come in handy soon, since they will be used for some of the IDs on our app's elements; which will help us locate them more
easily.

Finding Elements

Within each element of the list, notice their properties -- things like and . This is the kind of information we will want to reference in order interact text id
with the app.

Let's take the first element for example.

android.widget.TextView (0)
 text: API Demos
 id: android:id/action_bar_title
 strings.xml: activity_sample_code

In order to find that element and interact with it, we can search for it by text or by id.

> text('API Demos')
...
#<Selenium::WebDriver::Element:0x..fdfd4a900132140f4 id="2">

http://appium.io/slate/en/tutorial/ios.html?ruby#toc_19
https://github.com/appium/ruby_lib/blob/master/docs/ios_docs.md
http://developer.android.com/reference/android/widget/TextView.html

Copyright Sauce Labs 2016

Page 5

> id('android:id/action_bar_title')
...
#<Selenium::WebDriver::Element:0x..f8ac6f9543fdba436 id="6">

We'll know that we successfully found an element when we see a object returned.Selenium::WebDriver::Element

It's worth noting that in the underlying gem that enables this REPL functionality, if we end our command with a semi-colon it will not show us the return
object.

> text('API Demos')
displays returned value
> text('API Demos');
returned value not displayed

To verify we've found the element we expect, let's access the name attribute for it.

> text('API Demos').name
...
"API Demos"

 Finding Elements by ID

 A better approach to find an element would be to reference its ID, since it is less likely to change than the text of the element.

 In Android, there are a two types of IDs you can search with -- a resource ID, and strings.xml. Resource IDs are best. But strings.xml are a good runner-
up.

android.widget.TextView (10)
 text, desc: Text
 id: android:id/text1
 strings.xml: autocomplete_3_button_7

This element has one of each. Let's search using each with the id command.

resource ID
> id('android:id/text1')
...
#<Selenium::WebDriver::Element:0x..fdfb437dde1faa7c2 id="25">
strings.xml
> id('autocomplete_3_button_7')
...
#<Selenium::WebDriver::Element:0x..f9dc56786e74b5d48 id="26">

 Ending the session

In order to end the console session, input the command. This will cleanly quit things for you. If a session is not ended properly, then Appium will think it's x
still in progress and block all future sessions from working. If that happens, then you need to restart the Appium server by clicking and then iStop Launch
n the Appium GUI.

 x only works within the console. In our test scripts, we will use to kill the session.driver.quit

Copyright Sauce Labs 2016

Page 6

Using An Inspector
With the Appium Ruby Console up and running, we also have access to the Appium Inspector. This is another great way to interrogate our app to find
locators. Simply click the magnifying glass in the top-right hand corner of the Appium GUI (next to the button) to open it. It will load in a new Launch
window.

 Once it opens, you should see panes listing the elements in your app. Click on an item in the left-most pane to drill down into the elements within it. When
you do, you should see the screenshot on the right-hand side of the window auto-update with a red highlight around the newly targeted element.

 You can keep doing this until you find the specific element you want to target. The properties of the element will be outputted in the box on the Details
bottom right-hand corner of the window.

 It's worth noting that while the inspector works well for iOS, there are some problem areas with it in Android at the moment. To that end, the Appium team
encourages the use of (which is an inspector tool provided by Google that provides similar functionality to the Appium inspector tool). uiautomatorviewer
For more info on how to set that up, read .this

 For older Android devices and apps with webviews, you can use the selendroid inspector. For more information on, go .here

 There's loads more functionality available in the inspector, but it's outside the scope of this post. For more info I encourage you to play around with it and
see what you can find out for yourself.

http://developer.android.com/tools/testing/testing_ui.html
https://github.com/appium/appium-desktop
https://github.com/appium/appium-desktop

Copyright Sauce Labs 2016

Page 7

Outro
 Now that we know how to locate elements in our app, we are ready to learn about automating some simple actions and putting them to use in our first test.

	Appium Bootcamp 3: Interrogating Your App

